

**FF** Norwegian Defence Research Establishment

#### Modelling Total Defence Systems to Inform National Resilience Objectives – A Norwegian Case Study

Stig Rune Sellevåg, Ph.D.

16th NATO OR&A Conference, Copenhagen, 2022

### Security situation looking out towards 2040

- The Russian invasion of Ukraine and the 2020-2022 Covid-19 pandemic have affected all sectors in our society
- The war in Ukraine has created lasting changes in Europe's security environment
- The security situation is exacerbated by:
  - revisionist authoritarian states seeking to disrupt the current rulebased international order;
  - non-state actors who seek to inflict terror or gain profits through criminal acts;
  - substantial and accelerated technological change affects all policy areas and sectors;
  - the broad use of all instruments of power that is changing our understanding of security
  - the impacts of climate change



### The need for strengthening national resilience



Allies will develop a proposal to establish, assess, review and monitor resilience objectives to guide nationally-developed resilience goals and implementation plans

#### **Defence of Norway and the Total Defence Concept**



Photo: Norwegian Ministry of Defence

- Three lines of effort:
  - National defence
  - NATO's collective security and defence
  - Bilateral support and reinforcements
- The three lines of efforts are underpinned by the Total Defence concept
  - Comprehensive whole-of-society approach
  - Resilient critical infrastructures and resilient societies are a vital part of the total defence

### **Analytical methods**

Proposed methodology:

- Framework for describing total defence systems that is grounded in theory for complex systems
- Model for describing potential cascading consequences that follow disruptive events
- Method for mapping and quantifying interdependencies between the functions that constitute the total defence system



# Framework for infrastructure planning and resilience policies

Objective:

• Propose a framework that aid governments with the development of more coherent and effective national resilience policies

The framework:

- System-of-systems approach that is grounded in theory for complex sociotechnical systems
- Based on work domain analysis
- Consists of an abstraction hierarchy and a part-whole decomposition
- The framework is formative
- Promotes design for adaptation where actors within the system are allowed to adapt their behavior as they find appropriate without violating the system's constraints



| Keywords:                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| resilience, adaptation, critical infrastructures, national security, work domain analysis                                                                                                                              |
|                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                        |
| Article info<br>Researcher 35 Segments 2021<br>Review: 14 February 2022<br>Accepter 11 February 2022<br>Manufalle colline; 20 April 2022<br>DOI: Impartification; 20 April 2022<br>DOI: Impartification; 20 April 2022 |
|                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                        |

### **Abstraction hierarchy**

- 1. Functional purposes The overall purposes of the system
- 2. Values and priority measures The values that are assessed and used to measure the system's progress towards the functional purposes
- **3. Purpose-related functions** The generalised functions of the system that are necessary to achieve the functional purposes
- **4. Infrastructure-related processes** The functional capabilities of the system's assets that enable the purpose-related functions
- 5. Assets The system's assets that undertake the infrastructure-related processes

| Decomposition<br>level           | Whole<br>system | Sectors | Sub-sectors | Types of<br>entities |
|----------------------------------|-----------------|---------|-------------|----------------------|
| Abstraction level                |                 |         |             |                      |
| Functional purposes              |                 |         |             |                      |
| Values and priority measures     |                 |         |             |                      |
| Purpose-related<br>functions     |                 |         |             |                      |
| Infrastructure-related processes |                 |         |             |                      |
| Assets                           |                 |         |             |                      |

### Values and priority measures

- Two types of criteria:
  - Levels of services
  - Resilience criteria
- Values and priority measures should be invariants or relatively stable properties of the work domain
- Provide guidance for reasoning from first principles when the system is confronted with stressful, unanticipated events.

#### Values and priority measures:

- System level:
  - Ensure provision of essential civilian services to national and allied armed forces
- Sector level:
  - Resilient energy supplies
  - Resilient food resources
  - Resilient water resources
  - Resilient ability to deal with mass casualties and disruptive health crises
  - Resilient civil communications systems
  - Resilient transportation
  - Resiliente financial services
  - Resilient PNT services

# Abstraction hierarchy for the system of civil total defence functions



## Comparison of methods for modelling cascading consequences

|                                | Agent-based                                                | Network topology                       | Network flow                              | Input-output                             |
|--------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|
| Functional entities            | Agents                                                     | Graphs                                 | Flow networks                             | Linear systems                           |
| Model inputs                   | Agents,<br>environment,<br>interactions                    | Nodes, links                           | Node, links,<br>capacity, demands         | Interdependency<br>matrix, perturbation  |
| Model outputs                  | Emergent<br>phenomena of<br>distributed decision<br>making | Characteristic path length, clustering | Flow distribution on capacitated networks | Total effect of linear interdependencies |
| Aspects considered             | Decision rules, agent interactions                         | Network<br>connectivity                | Demand and supply                         | Ripple effects                           |
| Computational cost             | Large                                                      | Small, moderate                        | Large                                     | Small, moderate                          |
| Accessibility of<br>input data | Difficult                                                  | Medium                                 | Difficult                                 | Easy                                     |

### Dynamic inoperability input-output model (DIIM)

Discrete form where *k* is the time step parameter:

 $q(k+1) - q(k) = K[A^*q(k) + c^*(k) - q(k)]$ 

Infrastructure resilience coefficient matrix:

 $K = \operatorname{diag}(k_i); k_i \in [0, 1)^n$ 

Dynamic recovery (q(0) > 0,  $c^* = 0$ ):

 $\boldsymbol{q}(t) = e^{-K(I-A^*)t}\boldsymbol{q}(0)$ 



Resilience in this work is interpreted as the ability of the system to sustain or restore its basic functionality following a risk source or a disruptive event

# Estimation of interdependency matrix (A\*) from expert assessments

| Scale | Impact                                   |
|-------|------------------------------------------|
| 0     | None                                     |
| 1     | Insignificant (very limited degradation) |
| 2     | Minor (some degradation)                 |
| 3     | Moderate (significant degradation)       |
| 4     | Major (only some services provided)      |
| 5     | Severe (unable to provide services)      |



- "On a scale from 0–5, how would you rate the direct impact on TDF<sub>i</sub> occurring as a result of lack of services provided by TDF<sub>i</sub> for the geographical region under study?"
- The experts were asked to consider the following service outage scenarios: (*i*) ≤ 1 day; (*ii*) 1–3 days; (*iii*) ≥ 7 days

Fitted to data from Setola, R., De Porcellinis, S., & Sforna, M. (2009). Critical infrastructure dependency assessment using the input-output inoperability model. *International Journal of Critical Infrastructure Protection*, *2*, 170-178.

#### Interdependency mapping for Norwegian case study



#### Impact assessment (resilience loss)

Resilience loss metric (Bruneau *et al.*, 2003):

$$RL = \int_0^{t_{\rm R}} (1 - P(t)) \mathrm{d}t$$

Impact for each total defence function (TDF):

$$Q_i = \int_0^{t_{\rm R}} q_i(t) \mathrm{d}t$$

Impact for the whole system of TDFs:

$$Q_{\rm tot} = \sum_i Q_i$$



### Linkage to scenario and capability analyses of defences forces



### Conclusions

Findings:

- Proposed a practical-in-use system-scale and cross-sector functional approach for modelling total defence systems that is grounded in theory for complex systems
- The total defence system is described by using an abstraction-decomposition space for critical infrastructure systems, taking into account NATO's seven baseline requirements
- By mapping the interdependencies between the system's functions, cascading effects following disruptive events can be investigated by using DIIM
- The modelling results can be used to aid resilience assessments of the total defence system for current and future defence scenarios

Limitations:

- The system is modelled at a high level of abstraction (each TDF is treated as a single entity)
- The use of DIIM for modelling cascading effects (interdependencies are treated as constant in time)
- Need to take into account that the interdependencies likely will change for armed conflict scenarios compared to the peacetime situation



## FFI turns knowledge and ideas into an effective defence